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Three possible definitions are proposed for best simultaneous L, approximation
to n continuous real-valued functions, and the relation between best simultaneous
approximations and best L, approximations to the arithmetic mean of the n
functions is discussed.

Several authors have considered best simultaneous approximations to
two functions hand h belonging to C[a, b] by elements of a subset S of
C[a, b]. Diaz and McLaughlin [2,3] and Ling [5] have considered best
approximations in the supremum norm and Phillips and Sahney [7] have
given results for the L1 and L 2 norms. The problem of best simultaneous
approximation to an arbitrary number of functions has been discussed by
Holland and Sahney [4], who have generalized the results in [7] for the L 2

norm, and by Cheney, McCabe, and Phillips [6] who have generalized Ling's
[5] work using the supremum norm.

2

In each of the papers cited above, a definition of best simultaneous
approximation is given and a result of the following kind is established: the
best simultaneous approximation to n ();2) given functions coincides with
the best approximation (in the relevant norm, but with an important modifi­
cation in the case of [3]) to the arithmetic mean of the n functions.

We now examine three possible definitions of best simultaneous L1

approximation to n functions and explore whether, for any of these defi-
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nitions, the best simultaneous approximation coincides with the best L 1

approximation to the mean of the n functions.

DEFINlTlo,\; J. Given elements II ,f~ ,... ,fll of C[a, b] and S a subset of
C[a, b], we say that .1* E S is a best simultaneous L1 approximation to
f~ J2 ,... JII if

maxll; - s~
!

max f; - .I
J

for all .I E S, where II . Ii denotes the L 1 norm on C[a, b].

DEFINITION 2. Given elements f~ J2 ,...In of C[a, b) and S a subset of
era, b), we say that .1* is a best simultaneous L l approximation to11 J2 ".. ,j~
if

'" 0 hI lllax Ifix) - s*(x) dx :s:; r max f;(x) - s(x)! dx
'0 J '·11 i

for all S E S.

DEFINITION 3. Given elements f~ 'h ,... ,f" of C[a, b] and S a subset of
era, b), we say that .1* is a best simultaneous L1approximation to11 J2 ,...J"
if

n n

I If; - .1*1 :s:; I f: - .I

for all S E S.

i=l i=1

Remark. Phillips and Sahney [7] showed that the best simultaneous
approximation to two functions in the sense of Definition 2 does coincide
with the best L 1 approximation to the arithmetic mean of the two functions.

3

Jn this section we consider best simultaneous L 1 approximations in the
sense of Definition 1 above. First we note that

1 n .: n 1 . ",11- I Ii - sIl = ,I I - Ui - s) :s:; max :11] - .I!.
r, 11 i=l ,I I i=l n J

On taking the infimum over S, we find that the "error" of the best L1 approxi­
mation to the mean is bounded above by the "error" of best simultaneous
approximation in the sense of Definition I. The following counterexample
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shows that, in general, the best simultaneous approximation in the sense of
Definition 1 does not coincide with the best L 1 approximation to the mean.

COUNTEREXAMPLE 1. ChooseA(x) == 0 and};(x) - x on [0, 1J and let S
be the set of real numbers. A simple calculation shows that the best simul­
taneous approximation to A and}; from S in the sense of Definition 1 is the
number 1 - 1/(2)1/2, whereas the best L 1 approximation to -HJ; -L f2) is the
number ;];.

4

We now consider best simultaneous approximation in the sense of
Definition 2. First we quote a theorem of Phillips and Sahney [7J.

THEOREM 1. LetA and}; be elements ofC[a, bJand S be a subset ofC[a, b].
Then s* E S is a best simultaneous approximation to fl and}; in the sense of
Definition 2 if and only if it is a best L 1 approximation to t(J; +hJ

We now use this theorem to show that it does not extend directly to more
than two functions.

THEOREM 2. If s* is a best L 1 approximation to (l/n) 'i..~~di from Sand
n > 2, then in general s* is not a best simultaneous approximation to A,
}; ,... ,fn in the sense of Definition 2.

Proof Let A and f2 be arbitrary elements of C[a, b] and let /; = 12 for
j?: 2. Then

infI!) m<ix I/;(x) - s(x) [ dx
sES a ]

= infI
b

max[l/l(x) - s(x)[, I/ix) - s(x)l] dx.
sES a

By Theorem 1 above, the latter infimum is attained for s = s*, the best L 1

approximation to t(A +h). In general, this s* will not be the best L 1

approximation to

for n > 2, and this completes the proof.
To obtain a result for the approximation of n functions, n > 2, in the sense

of Definition 2, we define

gl(X) = max {fk(X), k = 1,2, ... , n},
k

glx) = min {fk(X), k = 1,2,... , n}
k

and state:
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THEOREM 3. Let fl J2 ,.. ·Ja be elements of era, b] and S be a subset of
C[a, b]. Then s* E S is a best simultaneous approximation to fl J2 ,... Ja in the
sense of Dejinition 2 If and only if it is a best approximation to gl and g2 in the
sense of Definition 2.

Proof For an arbitrary fixed x it is clear that

max i f~'(x) ~ sex).
k .

max[1 gtCx) ~ s(x)i, g2(X) - sex)']

and the theorem follows on integrating both sides and taking the infimum
over S.

The following theorem then follows from Theorems 3 and I.

THEOREM 4. Let fl J2 ,..·In be elements of C[a, b] and S be a subset of
C[a, b]. Then s* E S is a best simultaneous approximation to It J2 ,... ,fn in the
sense ofDefinition 2 ifand only if it is a best L 1 approximation to the arithmetic
mean ofmaxk{fk(x)} and min,Jfk(x)}.

Remark. Note that, for n = 2,

1mfx {j~(x)} -\ 1nyn {j~(x)} == Hj~(x) + j~(x)]

and we observe that Theorem 4 is a generalization of Theorem I. We also
note the similarity to the work of Diaz and McLaughlin [2] on simultaneous
approximation in the supremum norm.

5

]n this section we discuss best simultaneous L 1 approximation in the sense
of Definition 3. We state:

THEOREM 5. If sign(s(x) - hex)) is always positive (or always negative)
for all x E [a, b], for all j = I, 2, ... , n and for all s E S, then the best simulta­
neous approximation to fl J2 ,... In in the sense of Definition 3 coincides with
the best L 1 approximation to the arithmetic mean offl J2 ,...In .

Proof From the hypotheses in the statement of the theorem,

b n bin If L I f;(x) - s(x)1 dx = r L (fi(X) - SeX)) dx
a i=l -'a i=l

b II n I= n f -L /;(X) - SeX) dx
a n i~1

and the proof is completed by taking the infimum over S.
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We now give a counterexample to show that the best simultaneous
approximation to 11 and h in the sense of Definition 3 does not, in general,
coincide with the best L l approximation to the mean.

COUNTEREXAMPLE 2. Choose h , h, and S as in Counterexample 1.
A simple computation shows that the best simultaneous approximation to h
and h , in the sense of Definition 3, is the constant function s = 0, whereas
the best L 1 approximation to -H/l +12) is s = t·

Remark. The conditions of Theorem 5 arise naturally in the study of
one-sided approximations (see, for example, [1]). Further, Counterexample 2
shows the necessity of such conditions.
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